Selective photooxidation of methane into methanol by nitric oxide over V-MCM-41 mesoporous molecular sieves

Yun Hu^a, Shinya Higashimoto^b, Shuhei Takahashi^a, Yasuhito Nagai^a, and Masakazu Anpo^a,*

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531 Japan ^bDepartment of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585 Japan

Received 25 October 2004; accepted 28 October 2004

The partial photooxidation of methane by nitric oxide selectively led to methanol formation over the V-MCM-41 catalysts under UV irradiation ($\lambda > 270\,$ nm) at room temperature, while only a complete oxidation of methane could occur in the presence of oxygen. The yield of methanol corresponds with the yield of the photoluminescence of the isolated tetrahedrally coordinated V-oxides species, indicating that the charge transfer excited triplet state of these species are active sites in this photooxidation reaction.

KEY WORDS: partial photooxidation of methane; methanol; NO; V-MCM-1.

1. Introduction

The selective conversion of methane to higher hydrocarbons and/or oxygen-containing compounds such as methanol and formaldehyde has attracted much attention in the last decade since there are still difficulties in activating C–H bonds of CH₄ and C₂H₆ [1–5]. In most of these studies, high temperatures are required even for low conversion levels. Previously, it has been reported that a silica-supported vanadium oxide catalyst exhibits relatively high reactivity for oxidation of methane into methanol and formaldehyde [6–9].

Recently, Yoshida *et al.* [10] have reported that the SiO₂–Al₂O₃–TiO₂ ternary oxide system exhibited high photocatalytic activity for photoinduced direct methane coupling at room temperature to produce H₂ and hydrocarbons such as ethane. However, few studies on the selective photooxidation of methane into valuable and useful compounds such as formaldehyde and methanol have been successful [11–15].

Previously, we have reported on the photoinduced formation of methanol from methane using nitric oxide (NO) as an oxidant at 275 K on highly dispersed vanadium oxides supported on Vycor glass [15]. In this paper, we report on the photooxidation of methane on V-MCM-41 mesoporous molecular sieves since they can accommodate high concentrations of the isolated vanadium oxide species, significant for the successful partial oxidation of alkanes.

2. Experimental

The V-MCM-41(x), (x = 0.15, 0.28, 0.6, 1.2 V wt%), were synthesized in accordance with previous literature

*To whom correspondence should be addressed. E-mail: anpo@ok.chem.osakafu-u.ac.jp. [16], using tetraethyl orthosilicate (TEOS) and NH₄VO₃ as the starting materials and cetyltrimethylammonium bromide (CTMABr) as the template. After the assynthesized products were recovered by filtration, washed thoroughly with deionized water and dried at 373 K for 12 h, calcination of the samples was carried out in air at 773 K for 8 h. The vanadium content in these materials was determined by atomic absorption analysis.

Prior to carrying out the photoinduced reactions and spectroscopic measurements, the catalysts were degassed at 773 K for 1 h, heated in O₂ at the same temperature for 2 h, and finally degassed at 473 K for 2 h. The photooxidations of methane with O2 and NO were carried out on V-MCM-41 using a 100 W leg lamp ($\lambda >$ 270 nm) at room temperature. After each run, the catalyst bed was heated up to 573 K for the collection of the products that adsorbed tightly onto the catalyst at room temperature. The products were analyzed by online gas chromatography equipped with a flame ionization detector (F1D) for the analysis of the hydrocarbons and a thermal conductivity detector (TCD) for the analysis of O2, N2, N2O, CO, CO2, H2O, etc. The photoluminescence spectra were measured at 77 K with a Shimadzu RF-501 spectrofluorophotometer.

3. Results and discussion

The XRD patterns showed that all of the prepared V-MCM-41 catalysts have a siliceous MCM-41 mesoporous structure. Figure 1 shows the UV–Vis absorption spectra of the catalysts with different V contents. The samples exhibit absorption bands at around 245 and 300 nm which can be assigned to the charge transfer transition involving an electron transfer from the lattice oxygen $(O^2)_L$ to the vanadium (V^{5+}) ion of the distorted

tetrahedrally coordinated V-oxide species [17,18]. No absorption band could be observed in wavelength regions longer than 400 nm, indicating that the V-oxide species are present in a highly dispersed state and an aggregated V-oxide species such as V₂O₅ is not involved.

Figure 2 shows the results of the photooxidation of methane with O₂ and NO over the V-MCM-41 (0.6) catalyst. No products could be detected without the oxide catalysts or UV-light irradiation either in the presence of methane and O₂ or methane and NO mixture. In the presence of O₂, only the complete oxidation of methane into CO2 and H2O could occur under UVlight irradiation. However, the photooxidation of methane with NO over V-MCM-41 resulted in the formation of methanol with a high selectivity in addition to small amounts of CO₂ and traces of CO and C₂H₄. The methane conversion was 7% and the selectivity of methanol was 80%. The simultaneous photoreduction of NO led to the formation of N₂ and small amounts of N₂O. Figure 3 shows the reaction time profiles of the yields of the main products, CH₃OH and N₂, in the photoinduced reaction of CH₄ and NO on V-MCM-41. UV irradiation of V-MCM-41 in the presence of a mixture of CH₄ and NO led to the formation of CH₃OH and N_2 as major products together with CO_2 and N_2O as minor products. As shown in figure 3, the N_2 and CH₃OH yields increase in proportion to the UV-light irradiation time, while no products could be detected under dark conditions.

Figure 4 shows the effect of the V content of V-MCM-41 catalysts on the reactivity for the photo-oxidation of methane with NO. The yields of methanol and N_2 are shown to be the highest in the case of V-MCM-41 (0.6 V wt%), and an increase in V content led to a decrease in the reactivity, showing a good correspondence with the intensities of the photoluminescence spectra attributed to the isolated tetrahedrally

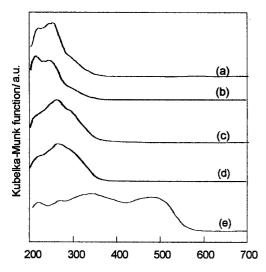


Figure 1. Diffuse reflectance UV–Vis, spectra of V-MCM-41 with various V contents: (a) 0.15, (b) 0.28, (c) 0.6, (d) 1.2 wt%, and (e) V_2O_5 .

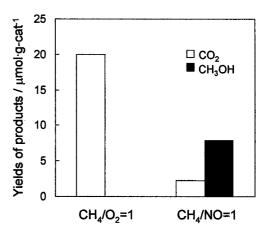


Figure 2. Yields of methanol and CO_2 in the photooxidation of methane with NO and O_2 on V-MCM-41 (0.6) at 295 K under UV light irradiation ($\lambda > 270$ nm) for 5 h. Amounts of added reactant: 150 μ mol g caf⁻¹.

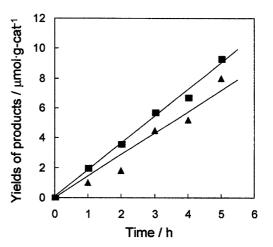


Figure 3. Reaction time profiles of the yields of CH_3OH (\blacktriangle) and N_2 (\blacksquare) in the photooxidation of methane with NO on V-MCM-41 (0.6) at 295 K under UV-light irradiation ($\lambda > 270$ nm).

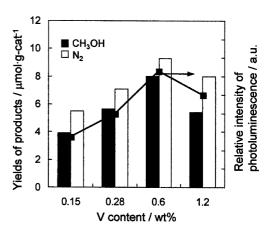


Figure 4. Relationship between the yields of CH₃OH, N₂ formation and the relative intensity of the photoluminescence spectra of V-MCM-41 having various V contents.

coordinated V-oxide species [19,20]. These results indicate that the charge transfer excited triplet state of the tetrahedrally coordinated V-oxide species acts as active sites in the photooxidation of methane in the presence of NO to form methanol and N_2 .

4. Conclusions

The photoinduced partial oxidation of methane with NO selectively led to methanol formation over the V-MCM-41 catalyst under UV irradiation at room temperature, however, only the complete oxidation of methane into CO₂ and H₂O was able to occur with O₂. It was found that the photocatalytic reactivity of V-MCM-41 for the partial oxidation of methane with NO depends on the local structure of the V-oxide species. The yield of methanol corresponded to the yield of the photoluminescence of the isolated tetrahedrally coordinated V-oxides species, indicating that the charge transfer excited triplet state of these species plays an important role as the active sites in the partial photooxidation reaction of methane with NO.

References

- [1] J.S. Lee and S.T. Oyama, Catal. Rev.-Sci. Eng. 30 (1988) 249.
- [2] W. Hill, B.N. Shelimov and V.B. Kazansky, J. Chem. Soc. Faraday Trans. 1(83) (1987) 2381.

- [3] M.J. Brown and N.D. Parkyns, Catal. Today 8 (1991) 305.
- [4] Z. Sojka, R.G. Human and K. Klier, J. Chem. Soc. Chem. Commun. (1991) 185.
- [5] A. Parmaliana, F. Frusteri, A. Mezzapica, D. Miceli, M.S. Scurrell and N. Giordano, J. Catal. 143 (1993) 262.
- [6] N.D. Spencer and C.J. Pereira, J. Catal. 116 (1989) 399.
- [7] M.M. Koranne, J.G. Goodwin Jr. and G. Marcelin, J. Phys. Chem. 97 (1993) 673.
- [8] M. Faraldos, M.A. Bañares, J.A. Anderson, H. Hu, I.E. Wachs and J.L.G. Fierro, J. Catal. 160 (1996) 214.
- [9] M.A. Bañares, J.H. Cardoso, G.J. Hutchings, J.C. Buena and J.L.G. Fierro, Catal. Lett. 56 (1998) 149.
- [10] H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, J. Phys. Chem. B 107 (2003) 8355.
- [11] S.L. Kaliaguine, B.N. Shelimov and V.B. Kazansky, J. Catal. 55
- [12] K.R. Thampi, J. Kiwi and M. Grätzel, Catal. Lett. 1 (1988) 109.
- [13] T. Suzuki, K. Wada, M. Shima and Y. Watanabe, J. Chem. Soc. Chem. Commun. (1990) 1059.
- [14] K. Wada, K. Yoshida, Y. Watanabe and T. Suzuki, J. Chem. Soc. Chem. Commun. (1991) 726.
- [15] M. Anpo, Y. Shioya and M. Che, Res. Chem. Intermed. 17 (1992) 15.
- [16] W. Zhang, M. Froba, J. Wang, P.T. Tanev, J. Wong and T.J. Pinnavaia, J. Am. Chem. Soc. 118 (1996) 9164.
- [17] J. Kornatowski, B. Wichterlova, J. Jirkovsky, E. Loffler and W. Pilz, J. Chem. Soc. Faraday Trans. 92 (1996) 1067.
- [18] S. Higashimoto, M. Matsuoka, H. Yamashita, M. Anpo, O. Kitao, H. Hidaka, M. Che and E. Giamello, J. Phys. Chem. B 104 (2000) 10288.
- [19] M. Anpo and M. Che, Adv. Catal. 44 (1999) 119.
- [20] M. Anpo, in: *Photofunctional Zeolites*, ed. M. Anpo (Nova Sci. Pub. Inc., New York, 2000).